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1. Introduction

Recently a new branch of blomathematical modelling called
compartment analysis Ijas been developed. The concept of compart
ment analysis assumes that a system may be divided into homogeneous
components, or compartments. Various characteristics of the system
are determined by observing the movement of tracer material.

Usually the theory is applied to describe the movement of a popu
lation of tracer molecules, e.g., the flow of iron molecules within
sheep. Possibly since the individual molecules are infinitesimal in
size, nearly all the previous literature has made the implicit assumption
of a deterministic flow pattern. In this paper we consider a discreat
population of practicles in a steady state compartment system where
the transitions are stochastic. The importance of the study of stocha
stic compartment models have been stressed by many authors, for a
recent development, i'ee Rustagi (1964, 1965). Cornfield c/a/. (1960)
also pointed out that the stochastic compartment model is more
realistic and should be investigated. Matis and Hartley (1971)
considered probability distribution theory of a general /j-compart-
ments and its implimentation into an estimation procedure. ,

Compartment analysis finds application in many diverse areas of
biomedical science. Also animal nutritionists identify a great variety
of materials for which the stochastic model describing the passage of
a given material through the gastrointestinal tract of ruminants,
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e.g. cattle and sheep, is useful. One particular substance of interest to
animal nutritionists consists of indigestible plastic beads used as
roughage substitute.

In this paper the stochastic compartment model is developed.
The probability generating function for the p random variables speci
fying the number of tracer particles is derived. Also the results
obtained by Matis and Hartley (1971) are obtained through a direct
and simplified approach and the probability meanings of the functions
defined by them are provided. Some fallacies in the non-linear least
squares estimation of the parameters from time-series data on fecal
output are pointed out.

2. Derivation of /^-Compartment Stochastic Model

Consider a general /^-compartment system, where each compart
ment is connected to each other and to the system exterior. In this
system, there are parameters. Figure (2.1) represents a general
p = Acompartment system with /?^=16 paramaters

A4-Comparlmect System.

Let Vji be the transilson intensity or 'turnover rate' from compartment
i to compartment j, where Vo, represents an cxcretion from compart
ment i. Then, by definition, is the probability that a particular
unit migrates from compartment i to compartment j in ttie time
interval At,

For 0<T<t, let

vjiA4 0(A)=i'ji('^, t+A)

«=P,[an individual in compartment i at time t will be in
compartment j at time x -f i^j ...(1)

l+v«A+0(A) - Piii^, T+A). i=l,2, . . . ,p. • ...(2)
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V„iA+ 0(A) = Ai (t,t+A),

=Pt [an individual in compartment i at time t will be in
exterior of the system at time 1+ A], •••0)

P

where v<i= — S vu, a linear combination of all rates leaving com-
J ^ '• partment i,

and 0 (A)represents any function such than lim
A->0 L A J

= 0

The probability of more than one migration in time A is 0(A).

For convenience we introduce the transition intensity matrix

Vii V2i ... Vj,i

V21 vaa ... V3,2

V •-=

and
'23)

(yoli ^02} J ^03))

For a time interval (0, /), 0<f<co, let

Pii (t)=PH (0, t), i,j=l, 2,..., p

Poi (f)-=Poi{Q, t), i=\,2,...,p,

with Pii (0)=1, Poi (0)=0, P,i (0)=0,

and further let

Pll(.0 PiliO P Vlif)

Pl^{t) P,,{t) ... P^2(0

P(/)

1^3,(0 P,At) J

Po(0 = [P01 (Oj ^o2(0vj P03)(0]

with P(0) =/andP„(0)=0.

...(4)

(5)

•(6)

.(7)
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The following assumptions are made :
Assumption I. are independent of time.
Assumption 2. The system is closed;
Whatever may be t^O and for every i, we have

y=0

so that the intensities and the transition probabilities have the
relations :

V« =^ Pn (0
Voi — P01{0

, 2,:.., p.
r=0

t=0

Assumption 3. The matrix Vis of full rank and the matrix Uis not
a zero matrix.

Therefore none of the compartments i is an absorbing com
partment, and there is excretion to thesystem exterior.

Now consider T</<^+A,

then,

Pit (-r, t+ A)=Pki (^> 0 PiciAt, t+ A)+ > Pn (t, 0 P^i (f' t+ A)

,=i

J^k ...(9)

Using (2), the equation (9) can be expressed as
Pjci t+ /\) -P,ci (T. 0

A

J^k

Taking limit as A-^0, we have

p

^Piu{'̂ ,t)^^Pnnj -(10

since Vji are assumed to be independent of time, ibe system of
differential equations (11) are

dt
Pu (0= Pa (0 -(12)
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These equations are known as Kolmogorov forward differential
equations. The corresponding matrix equation describing the p-
compartment stochastic model is

D P (t)=P(t) V,

or

where

(D-V) P(t)^Q,

» i

0 0

0

0

dt

...(13)

and P (t) and Vare the transposed matrices ofP (/) and Vrespecti
vely.

3. Solution of Stochastic Model

The stochastic model for the ;7-compartmentaI system is given
in (13). In case/7=l, the differential equation

DPit) = P{t) V

is an ordinary first order differential equation with a constant coeffi
cient. Formally, the solution of it is given by

P{t)=eZ' P{0)

Defining the matrix exponential
CO T/n yn

Z, n\ '
«=0

-.(14)

...(15)

equation (14) provides a solution of the matrix differential equation
(13) as

Vt
P(0 = e- .P(0). ...(16)
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The formal solution (16), however, is not very useful from a
practical point of view. For the purpose of application we need
explicit functions for the individual transition probabilities P«(<) that
will satisfy the diflferential equation. Such functions depend on the
eigen values of V. Let Sj, Sj, be the eigen values of Vand let

Aii be the cofactor of (i,7)th element ofthe matrix^(/)=(Sj I-V),
Let Ti (A:)=[/4si (/), A^2 (l) •••> (/)]' be an eigen vector of V

corresponding to Sj. The matrix of eigen vectors,

Tik)'^[T, (k), T, (/c),

diagonalizes V. The determinant of T(k) is denoted by | T(/c) 1.

Then following the approach of Chiang (1968) for 'illness-
death' process, it can be seen that the explicit solution for the
transition probabilities is given by

.(0=2;
/=i ~

/,7=1, 2,

Equation (17) holds true whatever may be k—l, 2, ..., p.
Chiang [1968, pp 138-140] considers equation (15) and expresses F
and its various powers in terms of the matrix of eigen vectors T{k),
its inverse T~^ (/c) and the diagonal matrix of eigen values. Then
expending the solution of P(0 is obtained the expHcit solution for

the transition probabilities as given in equation (17).

The transition probabilities Pat(t) and the corresponding transi
tion matrix Pgit) is derived utilizing probabilities Pait). Anindividual
in compartment i may reach the exterior of the system directly from
compartment i or by way of some other compartment j, j^i. Since
an individual in exit at time t may have reached that state at any
time prior to t, let us consider an infinitesimal time interval (t, t+^/t)
for a fixed T, 0<T<r. The probability of an event At, where Ai is
such that an individual in compartment i at time zero will reach out
of the system in the interval (t, -r + dr) is given by

P{Ai)=Pii{T:)V0i +̂ Pjt (t) vo^ d-^
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As T varies over the interval (0, t) the events Ai, are mutually
exclusive. Hence

t p
\

6 ^
The individual transition probability Poi{t) can be obtained from
above expression in the form given below; see Singh [1975],

t p

Poiit)= ^̂ Pii (t:) Vo^ jJ

p p

Poi(0 =

/=1 /=1

-(18)

i = ], 2,

4. Population Sizes and Associated Probability Distribution

An individual in compartment i at time 0 must be either in one
of the compartments or in the exterior of the system at time t.
Consequently the corresponding transition probabilities add to one,
so that

s
7=1

Pi, m-p^i (0=1- ...(19)

Equation (19) may be used to derive the probability distribution
of population sizes in /^-compartments at any time /. Let Ni (0)
denote the number of individuals in compartment i at time 0. Let
Ni (/) be a random variable specifying the number ofindividuals in
compartment i at time t. The initial size of the population is

P

iV(0)= Ni (0).

«=1

Nj (0 can be characterized according to their states at time 0. This
is expressed by the formula

N. (t)=Nn (/)+JV,-2 (t)+...+Nip it),

where Nuit) is the number of individuals in compartment i who were
in compartment j at time 0. On the other hand, each of the iVe(O)
individuals in compartment i at time 0 must be in one of the com
partments or in the exterior of the system at time 0. That is, at any
instant t,

P

Ni (0)= y Nj, it)+Noi it). -(20)
j=l
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Therefore given Ni (0), the random variables on the right side
of (20) have joint multinomial distribution.

The following assumption is made ;

,The behaviour of the NiiO) individuals in distributing them
selves among the various compartccents is independent of Nj(0)
individuals originating in compartnient It is to be noted that
the random variables iV,(0, i=0, 1,2, ... ,p are not independently
distributed.

For each i the random variable Nji(t),j=0, 1,2, ... ,p have
a multinomial distribution and their probability generating function
(pgf) is given by

E IA'.mJ

Therefore the pgf of the joint probability distribution for the popula
tion sizes of all the compartments at time t is

E [ 1Nm, N,(0), ... 2V,(0)]
P

= T| [^*11(0-^1 rP2i(0 •S'2+ ••• PviiO Poi{t) So] Nm

1=1

=P [Sj. J2, , Sp, j„], say

The joint probability distribution is then given by

P [Ni it)^nx, A^2(0 = «a..-.. •, (0 = «d. -^o (0=«o
1 N,(0), NM,-, NM]

^ Nm 12U
Z= 1

Tiu ! Has 1 ... ni,i 1 noi !

...(22)

1/ 2i Di oi

where the summation is taken over all possible values of nn, i,
j=l, 2, such that ' ,

The cumulaiit generating function, using Si=e , is given by

k {B„ 02, ; ,)=log P ie\ e\ ..., e", e")

= iV,(0)log[
1=1 7=0

•(23)
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Noting that 5'(,=1 and consquenlly = 0, result in (23)is equivalent to
P P

/r (01, ^2. {e'-\)PH{t) + \ ...(24)
/=1 ";=1

The expression in (24) turns out the same as obtained by Matis and
Hartley [1971]. Their approach, of course, is lengthy and much
involved.

The first moments of the compartments, (ii(0=£[iV< (0]i
particularly interesting. These can be computed directly from (21).
Clearly

p

(^^(0=2] NA0)PiAt),i==h2, ....F (25)
y=i

Letting

'^(0=[ni(0, (^3,(f)L
equations in (25) can be expressed in matrix notation as

M(t)=P'(t) M(0) ...(26)

Differentiating both sides of (26) with respect to t, we get

-^M(t)'=DP' (i)M(O)
= F' P'(t) M{0)

'=V'M(t) ...(27)

Equation (27) is identical to the deterministic equations of a general
/^-compartment system. That is, when Ni(0), i=\,2, . . p, are given
constants and the probabilities are intensities, the stochastic mode
is the deterministic one.

The corresponding variances and covariances are

V •
j=l

/=0, 1, 2, . . P.

P

V,(0,iVft(0=- ^ Puiit) PAt).
7 = 1

In practical situations, one observes the number of individuals
excreted to the exterior of the system as observations on individual
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compartments are either impossible or difficult. Let Nt (t) denote
the number individuals remaining in the system at time t. Clearly

P

NTit)= ^ NAi)
i=l

P P

Ni(0)

;=1 ;=1

p

Ni{Q)Poi{t)

1=1

-NiO)- ^

5. Joint Probability Distribution of the Numbers in the
System at Different Times

Let, for a given u,

iV; = [JVr {h), Nt {h), Nt (tj]

be the number of individuals in the system at time respec
tively. The pgf of the joint probability distribution of Nt is given
by

G, Nt (ti) Nt (/a) Nt (t^)Nj. N(0) •••, ' Su A^(0)],

...(28)
where I Si 1^1 for /=1, 2, u.

To derive an explicit formula for the pgf (28), we use the
identity

I JV(0)]

[s.""- ... <'"> IM,.),..., N(V.)}1 I
^(0)]. ..(29)

Using the Markov property, equation (28) becomes

=E ... E I Nt (^„-i)} 1A^(0)].
Repeated application of the same process gives

Gn
~T N(0) (Ji, 52, jJ= [l-{(l-Poi) (1-^j)+ (1-Po2)^i (I-J2)

+ (l-Po3) 52 (l-J3)+...+(l-Po«)(jlJ2...Ju-l) (1-Jj}]'^(°)...(30)
Here Pqi is defined to be the probability that the individual in

the system moves out of the system in the interval
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Expression in (30) is then used for deriving the joint probability

function ^t and their moments are given below.
P

cr\ =Var [Arr(<,)]=Var [
"/c=i

=Var [N{Q)-No{.U)]

P

= -(31)
k = l

The covariance a„ of the process at two different times, U and
tj is obtained as usual and is given by

P

<yii =^ NMPoilh) [l-P„,cW] ...(32)
k=l

These results show that for a given u, Nriti), Nritu) for the
process form a chain of binomial distributions. For a given t, Nic(t)
can be regarded as a mixture of multinomial distributions. Indeed,
Nriti)—Nritj) for, various intervals of t may also be regarded as a
mixture of mutinomial distributions, where the kth component
results from the iVs(O) units placed in the kth compartment.
Equations (31) and (32) may be combined into the following result:

Proposition 1. Let c7j3=Cov [Nrit^, Nxit,)] be covariance kernel of
the process describing the total number of individuals in the system
at times tj and such that Then

k=l

Summary

This paper is conerned with a finite tracer popuktion in a steady
state compartmental system with probabilistic flow. The system is
considered to have p compartments. The differential equations des
cribing p compartment stochastic model are derived. This paper
advances the distribution theory considerably by providing a compact
analytic solution of the stochastic differential equations forgiving
transition probabilities, population sizes.

Methods presented here provide an alternative setof procedures
to those of Matis and Hartley [1971] which are based on lengthy and
unnecessarily complicated approach through cumulant generating
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function. This approach has the advantage of giving the analyst the
direct probabilistic interpretations of various functions utilized in
deriving the probability distributions.
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